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Abstract

Biliary atresia (BA) is a congenital cholestatic disease that 
can seriously damage children’s liver function. It is one of 
the main reasons for liver transplantation in children. Early 
diagnosis of BA is crucial to the prognosis of patients, but 
there is still a lack of reliable non-invasive diagnostic meth-
ods. Additionally, as some children are in urgent need of liver 
transplantation, evaluating the stage of liver fibrosis and 
postoperative native liver survival in children with BA using 
a straightforward, efficient, and less traumatic method is a 
major focus of doctors. In recent years, an increasing num-
ber of BA-related biomarkers have been identified and have 
shown great potential in the following three aspects of clinical 
practice: diagnosis, evaluation of the stage of liver fibrosis, 
and prediction of native liver survival. This review focuses 
on the pathophysiological function and clinical application of 
three novel BA-related biomarkers, namely MMP-7, FGF-19, 
and M2BPGi. Furthermore, progress in well-known biomark-
ers of BA such as gamma-glutamyltransferase, circulating 
cytokines, and other potential biomarkers is discussed, aim-
ing to provide a reference for clinical practice.
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Introduction
Biliary atresia (BA) is an idiopathic neonatal liver disease 
characterized by inflammatory and fibrotic obliteration of in-
trahepatic and external biliary ducts. It is often manifested 
as neonatal jaundice, cirrhosis, and portal hypertension.1 The 

etiology of BA is currently unknown. It may be associated 
with viral infection,2 environmental toxins like biliatresone,3,4 
immune responses,5 and genetic susceptibility.6 BA is cur-
rently the main reason for liver transplantation in children,7 
with a high incidence in East Asian countries. According to 
a survey in Taiwan, there is approximately one patient with 
BA in every 5,000 live births.8 The diagnosis of BA mainly 
depends on intraoperative cholangiography.1,9,10 Kasai por-
toenterostomy (KPE) is the first-line treatment for BA, with 
the primary goal of re-establishing bile drainage.11

An early diagnosis of BA is very important for patients. 
Children diagnosed with BA who receive KPE within 90 days 
after birth are likely to have better jaundice clearance and 
native liver survival rates.12 However, there is currently a 
lack of reliable non-invasive diagnostic methods, and dis-
tinguishing BA from other neonatal cholestatic diseases re-
mains difficult. In addition, some patients will still develop 
cirrhosis after KPE and need liver transplantation.13 The early 
identification of high-risk children in need of liver transplan-
tation can help doctors change the treatment strategy and 
reasonably allocate the liver source to improve the prognosis 
of patients. Simply and efficiently identifying high-risk pa-
tients who need liver transplantation has been the focus of 
pediatric surgeons.

In recent years, serum biomarkers in patients with BA 
have shown great potential in clinical diagnosis and prog-
nosis assessments. Many biomarkers with high specificity 
and sensitivity are gradually being discovered. They are less 
invasive compared to intraoperative cholangiography. These 
biomarkers can be used for an early diagnosis of BA, assess-
ment of liver fibrosis in patients, and prediction of native liver 
survival after KPE.

In this review, recent research progress on serum bio-
markers in BA is summarized. We focus on the novel bio-
markers of BA and those with high clinical values, including 
MMP-7, FGF-19, and M2BPGi. We emphasize their role in the 
pathophysiology of BA and their clinical application accord-
ing to recent studies. The latest research progress on well-
known biomarkers like gamma-glutamyltransferase (GGT) 
and circulating cytokines, as well as other newly discovered 
biomarkers, are also discussed.

MMP-7
Matrix metalloproteinases (MMPs) are key enzymes involved 
in the degradation and deposition of all proteins in the ex-
tracellular matrix and play an important role in the process 
of tissue remodeling and fibrosis.14 Huang et al.15 suggested 
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that matrix metalloproteinase-7 (MMP-7) was overexpressed 
in liver biopsy samples and there was a significant difference 
when comparing the control group (children with no liver dis-
eases) and the liver transplantation group among children 
with BA. Lertudomphonwanit et al.16 found that MMP-7 is 
also highly expressed in the sera of patients with BA, through 
large-scale, quantitative serum proteomics. Consequently, 
the significance of MMP-7 in BA has been receiving increas-
ing attention.

There is a lack of research on the role of MMP-7 in the 
pathophysiology of BA, which may be presumed from lessons 
learned from other diseases.17 The first step is likely to be 
the damage to cholangiocytes from various causes, leading 
to the release of MMP-7.17,18 As previously mentioned, viral 
infections, environmental toxins, immune responses, and ge-
netic susceptibility are possible triggers for BA. Specifically, 
the main viruses investigated in BA include cytomegalovi-
rus (CMV), human herpesvirus-5, human papillomavirus, 
Epstein-Barr virus, and rotavirus rhesus.5 CMV infection is 

thought to be the most closely related to BA. This infection 
may cause disequilibrium of cytokine expression and re-
duction of regulatory T cells, resulting in an inflammatory 
response and subsequent bile duct injury.5 Biliatresone, a 
natural toxin found in plants, can damage extrahepatic chol-
angiocytes through decreased glutathione and SOX17 lev-
els.19 Immune responses led by Th1, Th17, and Treg cells 
can also participate in the injury of the bile duct.5 Genome-
wide association studies were carried out and identified sev-
eral genes as susceptibility factors of BA. A previous review 
has summarized common genetic variants in BA.20 Many of 
these genetic variants, like ADD3 and GPC1,21,22 can directly 
or indirectly cause biliary developmental defects and biliary 
tract damage. It is important to note that these triggers have 
been mostly studied in experimental models. Whether they 
can cause damage to the biliary tract in humans still warrants 
further investigation. An overview of how MMP-7 may be in-
volved in the pathophysiology of BA is shown in Figure 1. 
Firstly, MMP-7 can degrade collagen type IV; fibronectin; gel-

Fig. 1.  Overview of how MMP-7 may be involved in the pathophysiology of biliary atresia. Viral infection, environmental toxin, immune responses, and genetic 
susceptibility, which are thought to be the causes of BA, may damage cholangiocytes, leading to the release of MMP-7. (A) MMP-7 can cleave latent tumor necrosis 
factor-alpha secreted by macrophages, leading to the activation of tumor necrosis factor-alpha and pro-inflammatory effects. (B) MMP-7 can shed the ectodomain of 
syndecan-1 and establish a local chemokine gradient, resulting in the influx and activation of neutrophils. (C) MMP-7 activates the FAS ligand, which can induce apop-
tosis of cholangiocytes by binding to the FAS receptor. (D) MMP-7 can shed E-cadherin and reduce cell-to-cell contact. Reduced E-cadherin can finally lead to apoptosis 
of cholangiocytes. (E) MMP-7 can degrade collagen type IV and other extracellular matrix, leading to tissue remodeling and participating in liver fibrosis. (Figure created 
on biorender.com). CMV, cytomegalovirus; GSH, glutathione; TNF-α, tumor necrosis factor-alpha; ECM, extracellular matrix.
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atin type I, III, IV, and V; laminin; entactin; and elastin, lead-
ing to tissue remodeling.23,24 Secondly, MMP-7 can promote 
inflammation through macrophages and neutrophils. MMP-7 
can cleave latent tumor necrosis factor-alpha to its soluble 
form and subsequently induce infiltration of macrophages.25 
Besides, it can shed the ectodomain of syndecan-1, thereby 
establishing a local chemokine gradient that controls the in-
flux and activation of neutrophils.26,27 Finally, MMP-7 may 
play a crucial role in cell apoptosis. A study has shown that 
MMP-7 could shed and activate FAS ligands, thereby mediat-
ing epithelial cell apoptosis through FAS receptor.28 Another 
study found that MMP-7 can also shed E-cadherin, which is 
a cell-cell adhesion molecule, leading to reduced cell-to-cell 
contact and subsequent cell apoptosis.29,30 It can be seen 
from the above studies that MMP-7 may be involved in vari-
ous aspects of the development of BA. However, further 
studies are required to confirm these findings.

The role of MMP-7 in the diagnosis of BA seems to be clear. 
The results of some important clinical studies on MMP-7 from 
2018 to 2023 are shown in Table 1.31–40 According to the 
systematic review by He et al.,31 the sensitivity, specificity, 
and area under the curve of MMP-7 in the diagnosis of BA 
were 96%, 91%, and 0.9847, respectively. It is worth not-
ing that the studies by Jiang et al.32 and Yang et al.33 were 
comparable, because they used the same enzyme-linked im-
munosorbent assay (ELISA) kit to detect serum MMP-7 con-
centration, both were conducted in China, and the median 
ages of the patients in the BA group were similar in the two 
studies. We found that the cut-off values produced by the 
two studies considerably differed. Although the sample size 
in the study by Jiang et al.32 was larger compared to that of 
Yang et al.,33 the former was a single-center study with fewer 
subjects from different regions. The subjects in the study by 
Jiang et al.32 seemed to have more severe liver damage be-
cause they had higher ALT and AST levels. This suggests that 
patients’ liver function may have an impact on the cut-off 
value of MMP-7. Grouping patients according to liver function 
and exploring their cut-off value of MMP-7 may be the direc-
tion of future research. Rohani et al.,34 Chi et al.,35 Sakaguchi 
et al.36 and Wu et al.37 used another kind of ELISA kit, but 
their cut-off values were also very different. The sample sizes 
of Rohani et al.,34 Wu et al.37 and Sakaguchi et al.36 were 
relatively small and their cut-off values may not be accurate. 
Besides, the time point of blood sample collection, methods 
of sample storage, and the regions of the patients in these 
studies were different, along with the disease distribution 

in the control group. Interestingly, both Yang et al.33 and 
Sakaguchi et al.36 found that MMP-7 levels in patients were 
positively correlated with age, while Rohani et al.34 suggest-
ed that there was no significant relationship between serum 
MMP-7 levels and age after adjusting for possible confound-
ers (including GGT). Recently, Wu et al.41 suggested that the 
age-adjusted MMP-7 ratio could distinguish between BA and 
cholestasis, but there was no significant improvement in its 
sensitivity and specificity. This may indicate that the degree 
of liver injury, rather than age, is a crucial factor affecting 
serum MMP-7 levels. Current studies in this field have been 
mainly conducted in Asia, and studies in other regions and 
cross-regional studies are lacking. A recent study in the UK 
has shown that MMP-7 may also hold significance in the di-
agnosis of BA among Western patients.38 However, we found 
the sensitivity of MMP-7 in the diagnosis of BA was much 
lower in Western studies than in Asian studies, and the cut-
off value was much higher. In addition to the use of different 
ELISA kits, this may also reflect ethnic differences in BA. Al-
though most researchers have recognized the role of MMP-7 
in the diagnosis of BA, some have questioned it. A study in 
Iran found the capability of the MMP-7 to distinguish BA from 
the non-BA cholestasis group fell significantly short of ex-
pectations.39 We note that this study used a different ELISA 
kit compared to other studies. Besides, in this study, serum 
samples were stored at −20°C instead of −70°C or −80°C as 
in other studies, which may have led to protein degradation. 
The composition of disease in the control group may also be 
an important factor influencing the results. According to the 
study, non-BA cholestasis diseases such as inspissated bile 
syndrome, tyrosinemia, galactosemia, and hemophagocytic 
lymphohistiocytosis were included in the control group in this 
study, while the control group of the other studies did not 
involve these diseases. Therefore, studying the expression 
level of MMP-7 in other cholestatic diseases may help to im-
prove the diagnostic accuracy of MMP-7 in BA.

Although the diagnostic significance of serum MMP-7 is 
steadily increasing, the ability of MMP-7 to assess the stage 
of liver fibrosis in children remains controversial. A study 
by Lertudomphonwanit et al.16 determined that there was 
no significant correlation between serum MMP-7 s and the 
stage of liver fibrosis in patients, while Jiang et al.32 and Chi 
et al.35 reported contrasting findings. It is worth noting that 
Lertudomphonwanit et al.16 and Jiang et al.32 used different 
systems to evaluate histological fibrosis. Besides, Leung et 
al.42 used shear wave velocity to measure liver stiffness, an 

Table 1.  Clinical studies on MMP-7 from 2018 to 2023

Region Cut-off val-
ue, ng/mL

Sensitiv-
ity, %

Specific-
ity, %

Sample size 
of BA group

Sample size of non-
BA cholestasis group Reference

China 52.85 98.67 95.00 75 60 33

China 10.37 95.19 93.07 187 101 32

China 26.73 96.70 95.60 214 226 35

China 1.43 97.30 83.20 36 64 37

Japan 18.60 100.00 90.00 27 29 36

India 4.99 96.00 90.40 25 21 40

Iran 7.80 95.50 94.5 22 32 34

Iran 1.90 84.60 45.10 13 31 39

UK 69.00 68.00 93.00 32 27 38

Meta-analysis / 96.00 91.00 – 31

BA, biliary atresia; MMP-7, matrix metalloproteinase-7; UK, United Kingdom.
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indirect measure of fibrosis. They found that MMP-7 signifi-
cantly correlates with increased liver stiffness in patients with 
BA (n = 187), supporting the findings of Jiang et al.32 and 
Chi et al.35

In addition, many researchers have tried to screen out 
high-risk children who may need liver transplantation af-
ter KPE based on their serum MMP-7 concentrations. Chi et 
al.35 tracked dynamic changes in MMP-7 concentrations and 
patient prognosis in children with BA from diagnosis to liver 
transplantation. They summarized four patterns of MMP-7 
changes in these patients after KPE and found that changes 
in serum MMP-7 concentrations were a significant predictor 
of survival with the native liver in 2 years at 6 weeks post-
KPE and the most accurate predictor at 3 months post-KPE. 
However, Sakaguchi et al.36 suggested that serum MMP-7 
concentrations in patients before KPE as well as 1 and 4 
weeks after KPE could not predict whether patients would 
need liver transplantation 1 year after KPE. According to 
Wu et al.,37 serum levels of MMP-7 6 months after KPE may 
predict the need for liver transplantation in patients with 
BA during the first 3-4 years after KPE. These three stud-
ies tracked changes in MMP-7 concentrations after KPE at 
different times. Long-term detection of MMP-7 levels after 

KPE may be necessary for doctors to predict the prognosis 
of patients.

FGF-19
Cholestasis is one of the main characteristics of BA. Studies 
in vivo and in vitro have confirmed that the accumulation 
of bile acids in cholestasis can trigger a hepatocyte-specific 
inflammatory response, leading to damage of the hepatic tis-
sue and fibrosis.43 Fibroblast growth factor-19 (FGF-19) is an 
endocrine factor mainly secreted by the small intestine and 
plays an important role in the negative feedback regulation 
of bile acid synthesis.44,45 It is mainly expressed in the small 
intestine and is not expressed in the liver under physiologi-
cal conditions.45–47 Figure 2 shows the function of FGF-19 in 
physiological conditions and BA. In healthy conditions, bile 
acids are synthesized in the liver and stored in the gallblad-
der. After a meal, they are released into the duodenum, and 
95% of them are reabsorbed in the ileum.45 Bile acids are 
transported into enterocytes via the apical sodium-depend-
ent bile acid transporter.48 Subsequently, bile acids signal the 
farnesoid X receptor (FXR), which facilitates the transcrip-
tion of FGF-19.49 FGF-19 reaches the liver via the portal vein 

Fig. 2.  Function of FGF-19 in physiological conditions and biliary atresia. Bile acids are synthesized in the liver and released into the duodenum after meals. 
When bile acids reach the distal ileal, they are transported into the enterocytes via the apical sodium-dependent bile acid transporter. After they get into enterocytes, 
FXR on the nucleus is signaled, leading to the transcription of FGF-19. FGF-19 reaches the liver via the portal circulation and binds to the fibroblast growth factor 
receptor-4–b-Klotho complex on hepatocytes. Subsequently, cholesterol 7 alpha-hydroxylase is inhibited due to the activation of the intracellular Jun N-terminal kinase 
pathway. As a result, the synthesis of bile acid is downregulated. However, bile acids cannot reach the distal ileal in BA. It seems that excess bile acids can activate FXR 
in hepatocytes and induce the expression of FGF-19, which may activate the fibroblast growth factor receptor-4–b-Klotho complex on the membrane of hepatocytes 
and downregulate bile acid synthesis. Besides, bile acids in systemic circulation may also induce enterocytes to secret FGF-19, leading to the upregulation of FGF-
19 in serum. Dashed lines represent potential pathways in BA. (Figure created on biorender.com). FGF-19, fibroblast growth factor-19; JNK, Jun N-terminal kinase; 
FGFR4, fibroblast growth factor receptor 4; KLB, b-Klotho; CYP7A1, cholesterol 7 alpha-hydroxylase; FXR, farnesoid X receptor; ASBT, apical sodium-dependent bile 
acid transporter.
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and interacts with fibroblast growth factor receptor-4 and 
coreceptor b-Klotho on the membrane of the hepatocytes.48 
Through subsequent activation of both extracellular signal-
regulated kinase and Jun N-terminal kinase pathways, the 
transcription of the rate-limiting cytochrome P450 enzyme, 
cholesterol 7 alpha-hydroxylase, is downregulated, resulting 
in a downregulation of bile acid synthesis.45,48 In BA, the 
enterohepatic circulation of bile acids is blocked. However, 
recent studies have shown that hepatocytes can also express 
FGF-19 during cholestasis.50,51 Another study found that el-
evated circulating FGF-19 in patients with BA is of hepatic 
origin.52 Since FXR is also expressed in hepatocytes,48 we 
can infer that hepatocytes can express and secrete FGF-19 
on their own in BA, resulting in reduced bile acid synthesis. 
Thus, FGF-19 may reflect the degree of cholestasis in BA. 
Furthermore, enterocytes can sense highly elevated levels of 
bile acids in the systemic circulation to induce FGF-19,53 indi-
cating that bile acids may also have the ability to activate in-
testinal FXR-FGF-19 from the basolateral side of enterocytes.

Recently, FGF-19 has been used to predict native liver sur-
vival in BA. Johansson et al.52 found that serum FGF-19 was 
significantly reduced after KPE, particularly in the group of 
patients that went on to survive with their native liver at the 
age of 2 years.52 They focused on the origin and changes 
of FGF-19 in the sera of patients with BA. However, their 
study only included 14 children. To further explore the value 
of FGF-19 as a biomarker for KPE outcomes, Nyholm et al.54 
analyzed the sera of 74 children with BA and found that pa-
tients with continued elevations of serum bilirubin after KPE 
had significantly higher serum levels of FGF-19 at KPE. When 
serum FGF-19 concentration at KPE exceeded 109 pg/mL, 
the native liver survival was significantly decreased, suggest-
ing that the increased level of FGF-19 at KPE may indicate 
a poor prognosis. Importantly, this study revealed a positive 
correlation between serum primary bile acids and FGF-19 at 
the time of KPE. However, Johansson et al.52 did not find 
this correlation. The discrepancy in the results of the two 
studies may be attributed to the administration of ursode-
oxycholic acid, an antagonist to FXR. It also indicated that 
ursodeoxycholic acid may influence the synthesis of FGF-19. 
In addition, Nyholm et al.54 suggested that serum FGF-19 
was associated with ductular reaction in patients with BA. As 
FGF-19 has a direct ability to enhance proliferation, dediffer-
entiation, and transformation of cultured cholangiocytes,55 
the specific mechanism of FGF-19 in BA-related ductular re-
action is worth exploring. Although the study by Nyholm et 
al.54 had a relatively large sample size, their serum and biop-
sy samples were stored for more than 14 years. The degra-
dation of protein and mRNA may have affected the accuracy 
of the results. Besides, the study by Nyholm et al.54 did not 
track changes in FGF-19 in children with BA after KPE. If the 
serum level of FGF-19 and the degree of ductular reaction 
can be tracked after KPE, the relationship between FGF-19 
and ductular reaction can be clearly demonstrated. Further-
more, according to Johansson et al.,52 the change of FGF-19 
after KPE may also be an important factor in predicting the 
prognosis of children with BA. Follow-up studies tracking the 
changes of FGF-19 in patients after KPE are required.

As increased serum FGF-19 levels may reflect liver injury 
and predict mortality in both primary biliary cholangitis and 
alcoholic hepatitis,51,56 they could serve as potential prog-
nostic biomarkers for BA. However, only two studies are in-
sufficient to support the current conclusions. More studies 
with larger sample sizes from different regions are needed to 
verify the role of FGF-19 in BA. The role of FGF19 in ductular 
reaction also needs to be investigated, as FGF19 may also be 
a biomarker of bile duct injury in patients with BA.

M2BPGi
Liver biopsy is still considered the gold standard for strati-
fying hepatic fibrosis.57 However, this technique is invasive, 
and histologic interpretations may vary.58 Mac-2 binding 
protein glycan isomer (M2BPGi), also called WFA-M2BP, is a 
novel marker of liver fibrosis, which has been confirmed in 
BA,59 primary biliary cirrhosis,60 autoimmune hepatitis,61 and 
non-alcoholic fatty liver disease.62,63 Although M2BPGi may 
be a common marker for evaluating liver fibrosis, M2BPGi 
COI values seem to differ among the causes of liver fibro-
sis.64 Therefore, it is worth studying in BA.

M2BPGi is mainly secreted by hepatic stellate cells (HSCs) 
in liver fibrosis and is involved in the interaction between 
HSCs and Kupffer cells (KCs).65 The role of M2BPGi in the 
progression of liver fibrosis is shown in Figure 3. Studies 
have found that HSCs are the source of M2BPGi.65,66 Exog-
enous M2BPGi can enhance Mac-2 expression by KCs.65 Fur-
thermore, HSCs can be activated by KCs in the co-culture of 
HSCs and KCs. Activated HSCs differentiate into myofibro-
blast-like cells, characterized by the upregulation of alpha-
smooth muscle actin (α-SMA).67 These activated HSCs can 
produce extracellular matrix proteins and play an important 
role in liver fibrosis.68 Inhibition of Mac-2 expression has 
been found to significantly impair the ability of KCs to en-
hance α-SMA expression by HSCs.65 Therefore, M2BPGi may 
be a juxtacrine-acting messenger sent by HSCs to KCs during 
liver fibrosis.

Several studies from Japan have shown that M2BPGi 
shows great potential in the evaluation of liver fibrosis in BA. 
A study by Yamada et al.59 may have been the first to ex-
amine the value of M2BPGi in patients with BA. The study in-
cluded 64 children with BA who underwent living donor liver 
transplantation; their blood samples were collected the day 
before transplantation. It was found that M2BPGi showed the 
strongest ability to predict grade F4 fibrosis (METAVIR fibrosis 
scores) in children with BA. The area under the curve value of 
M2BPGi was 0.917. There was high sensitivity (94.1%) and 
specificity (92.3%) when the cut-off value was 3.53 (C.O.I). 
However, 79.7 % of patients in the study developed grade F4 
fibrosis. There were very few children with mild liver fibrosis, 
which may have led to a biased conclusion. Ueno et al.69 

Fig. 3.  Role of M2BPGi in the progression of liver fibrosis. Firstly, M2B-
PGi is secreted by HSCs. Next, M2BPGi enhances Mac-2 expression by KCs. 
Finally, Mac-2+ KCs markedly increased α-SMA expression by HSCs, leading to 
the activation of HSCs and the production of extracellular matrix. (Figure cre-
ated on biorender.com). M2BPGi, mac-2 binding protein glycan isomer; HSC, 
hepatic stellate cell; KC, kupffer cell; α-SMA, alpha-smooth muscle actin; ECM, 
extracellular matrix.
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used the same method to test serum M2BPGi of 37 children 
with BA and also found that the median M2BPGi in patients 
with F4 liver fibrosis was significantly higher compared to 
patients with F0–F3 liver fibrosis. Despite the small sample 
size, the liver fibrosis stage in their patients was more evenly 
distributed. Furthermore, Ueno et al.70 tracked serum M2B-
PGi of 11 children with BA and suggested that the increase 
of serum M2BPGi in patients may be associated with the pro-
gression of liver fibrosis and the decline of liver function.

The research objects of the above three studies covered 
patients with BA who underwent liver transplantation, those 
with cirrhosis, and those with normal liver function. All re-
sults suggested that M2BPGi could help predict the stage of 
liver fibrosis in children with BA, especially in children with 
F4 liver fibrosis. To better understand the value of M2BPGi, 
studies from different regions with larger sample sizes and 
long-term follow-ups are warranted.

GGT
GGT is an enzyme that mainly exists in the cell membranes 
of the liver, kidney, pancreas, and other organs and plays an 
important role in the transport of amino acids.71 It is gen-
erally considered a sensitive but not highly specific indica-
tor of liver function and is widely used in clinical practice.71 
As the levels of GGT in the sera of BA patients are usually 
high,16,72,73 GGT has been widely used for the diagnosis of BA 
in recent decades. A previous study has shown that serum 
levels of GGT>300 U/L or a daily increase of 6 U/L could dis-
tinguish BA from neonatal hepatitis, with an accuracy of 85% 
and 88%, respectively.72 However, only 29 patients with BA 
were included in this study. In recent years, the diagnostic 
value of GGT in BA has been extensively studied, and some 
of the results are shown in Table 2.31–34,37,39,74–76 A study by 
Rendon-Macias et al.73 suggested that combining patient age 
with GGT levels could improve the reliability of diagnosis. 
However, the small sample size of their study affected the 
statistical power of the study. Chen et al.77 enrolled 1,338 
children with BA and 131 children with obstructive jaundice 
and divided them into different age groups, aiming to in-
vestigate the cut-off value of GGT in different age groups. 
Although a large number of patients were included in this 
study, information on patients younger than 30 days of age 
is lacking. Recently, Weng et al.74 conducted a multicenter 
study that divided patients into different age groups. The 
cut-off value of GGT in patients younger than 30 days was 
reported in this study. Interestingly, Chen et al.77 and Weng 

et al.74 both found that the cut-off value of GGT peaks be-
tween 61 and 90 days after birth. This interesting finding 
may indicate that the diagnostic cut-off value of GGT is not 
simply positively correlated with age but fluctuates with age. 
Although GGT may not be as accurate as MMP-7 for the di-
agnosis of BA, it can be used as an alternative when MMP-7 
testing is unavailable. Besides, the abovementioned studies 
were conducted mainly in China. Studies should be conduct-
ed in different regions to generalize the conclusion.

Circulating cytokines
The inflammatory response is one of the important reasons 
for biliary tract injury in patients with BA.5 As circulating cy-
tokines play an important role in immune inflammatory re-
sponses in the systemic and local environment, changes in 
these inflammatory molecules in serum are generally consid-
ered potential biomarkers of tissue damage, and damage to 
the hepatobiliary system is no exception.78 Previous studies 
have confirmed the presence of an inflammatory response in 
the liver of patients with BA, which is mainly characterized 
by the excessive production of cytokines, including cytokines 
of T cells, macrophages, and other pro-inflammatory cells.79 
Recently, many researchers have attempted to use circulat-
ing cytokines as non-invasive biomarkers to diagnose BA and 
predict the post-KPE progression of patients.

Interleukin-8 (IL-8), a chemokine involved in neutrophil 
recruitment, is closely associated with bile duct response and 
liver fibrosis.80–83 Studies have shown that IL-8 is highly ex-
pressed in the sera of patients with BA and is involved in 
disease progression.84–86 Udomsinprasert et al.87 studied the 
plasma of 82 children with BA and 25 healthy controls. They 
screened out 17 cytokines with high expression levels in the 
plasma of children with BA at the time of KPE. When the cut-
off value of IL-8 was 2.29 pg/mL, the sensitivity and specific-
ity of IL-8 for the diagnosis of BA were 90.2% and 92.0%, 
respectively. Furthermore, they found that patients with high 
plasma IL-8 levels had a significantly reduced survival rate. 
The primary disadvantage of this study is that the control 
group did not include patients with non-BA cholestasis. In a 
study by Godbole et al.,83 which included 115 patients with 
BA, IL-8 was markedly overexpressed in the sera of these 
patients at the time of KPE compared with normal controls 
but was not correlated with the native liver survival rates of 
children after KPE. Madadi-Sanjani et al.88 also found that 
IL-8 was not an effective predictor of the stage of cirrhosis 
and the need for liver transplantation in patients after KPE. 

Table 2.  Studies on the diagnostic value of gamma-glutamyl transferase in biliary atresia

Region Cut-off 
value, IU/L

Sensitiv-
ity, %

Specific-
ity, %

Sample size 
of BA group

Sample size of non-BA 
cholestasis group Reference

China 314 64.00 71.67 75 60 33

China 185 86.02 73.27 187 101 32

China 5.8* 78.60 79.60 1,512 216 75

China 350.0 59.30 85.40 150 575 74

China 216 83.33 84.37 36 64 37

Egypt 286 76.70 80.00 30 30 76

Iran 434.5 77.30 77.80 22 32 34

Iran 230 84.60 90.30 13 31 39

Meta-analysis / 80.00 79.00 – 31

*The value here is In (GGT). BA, biliary atresia; GGT, gamma-glutamyltransferase.
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Thus, although IL-8 may be a potential auxiliary diagnostic 
indicator, its value in predicting native liver survival after KPE 
remains controversial. Further prospective cohort studies are 
required to validate the existing findings.

Interleukin-33 (IL-33) is a nuclear cytokine that is re-
leased after cell death as a consequence of severe tissue 
injury.89 Previous reviews have explored the pathophysi-
ological function of IL-33 in liver inflammation.90,91 An early 
study by Dong et al.92 included 18 infants with BA, 12 infants 
with non-icteric choledochal cysts (CCs), and 10 healthy con-
trols (HCs) and suggested that the level of IL-33 expression 
in serum was significantly elevated in patients with BA, as 
compared with the CC and HC groups. Recently, Behairy et 
al.93 found that serum IL-33 in patients with BA was signifi-
cantly higher compared to patients with non-BA cholestasis 
and normal controls. When the cut-off value of IL-33 was 
20.8 pg/mL, the specificity and sensitivity for the diagnosis 
of BA were 95% and 96.7%, respectively. At a cut-off value 
of ≥45.3 pg/ml, IL-33 can detect liver fibrosis of significant 
fibrosis (F3) with a specificity of 72.2% and a sensitivity of 
66.7%. Although the study included only 30 patients with 
BA and 30 patients with non-BA cholestasis, it showed that 
IL-33 may assist in the diagnosis of BA and the evaluation 
of the grade of liver fibrosis. It is worth noting that Chen et 
al.94 also explored the value of IL-33 in the diagnosis of BA in 
a sample size similar to that in the study by Behairy et al.93 
Interestingly, their cut-off values varied widely (20.8 pg/mL 
vs. 314.1 pg/mL), and the study by Chen et al.94 reported 
much lower specificity and sensitivity. This disparity may be 
attributed to the different detection methods used in the two 
studies. Further investigation into this aspect is warranted.

In addition, other circulating cytokines may also have clin-
ical value in the diagnosis and evaluation of BA. Chen et al.94 
screened Th17-related cytokines in the sera of patients with 
BA and found that the serum levels of macrophage inflam-
matory protein-3alpha (MIP3a) may also aid the diagnosis of 
BA, with a specificity of 80.00% and a sensitivity of 90.48%. 
Vejchapipat et al.95 suggested that serum IL-18 levels signifi-
cantly increased with the degree of jaundice in medium-term 
survivors of BA, while Urushihara et al.96 also found that the 
change in serum IL-18 levels may related to the native liver 
survival of patients with BA. Wu et al.97 found that a preop-
erative serum IL-12p40 level of >33 pg/mL can significantly 
predict 3-year survival with native liver. Adawy et al.98 sug-
gested that IL-13 receptor alpha 2 (IL-13Rα2) may reflect 
liver fibrosis in patients with BA. However, their studies only 
included a small number of cases in a single region and there 
is a lack of further research to validate their conclusions.

Other potential biomarkers
In addition to the above widely studied biomarkers, an in-
creasing number of BA-related biomarkers are gradually be-
ing discovered, which may also hold potential diagnostic or 
prognostic value.

Biomarkers that can be used to diagnose BA have always 
been the focus of attention. Li et al.99 found that human po-
liovirus receptor (PVR) expression was upregulated in the 
bile ducts of patients with BA and RRV-induced BA mice. Fur-
thermore, PVR may be involved in the pathogenesis of BA by 
regulating the NK cell-mediated bile duct injury.99 Besides, 
the concentration of PVR in the sera of children with BA was 
significantly higher than that in the sera of healthy controls. 
This suggests that PVR may be a potential biomarker of BA. 
However, more studies that compare the serum levels of PVR 
in patients with BA and non-BA cholestasis are warranted. 
Madadi-Sanjani et al.100 found that serum caspase-3 activity 

in children with BA was significantly higher than that in other 
patients with non-BA cholestasis, suggesting that caspase-3 
is also a potential biomarker of BA. Kong et al.101 found in-
creased expression of leukocyte cell-derived chemotaxin 2 
(LECT2) mRNA in the liver tissues of children with BA. An-
other study found that LECT2 was also highly expressed in 
the sera of children with BA.102 Dong et al.103 used miRNA 
microarray analysis to screen differentially expressed micro-
RNAs (miRNAs) in the sera of patients with BA and those with 
non-BA neonatal cholestasis. They found that the expression 
levels of miR-4429 were significantly downregulated whereas 
those of miR-4689 were significantly upregulated in the sera 
of patients with BA, suggesting that miR-4429 and miR-4689 
could serve as potential diagnostic biomarkers of BA. Peng 
et al.104 found that patients with BA had lower plasma levels 
of miR-140-3p compared to cholestatic disease controls. At 
the optimal threshold, their sensitivity and specificity in diag-
nosing BA were 66.7% and 79.1%, respectively. Similarly, a 
study by Zahm et al.105 found that the miR-200b/429 cluster 
was significantly increased in the sera of patients with BA 
relative to infants with non-BA cholestatic disorders. These 
miRNAs appear to have a significant value in the diagnosis 
of BA, although studies with larger sample sizes are lacking.

Biomarkers that reflect liver fibrosis in BA are also being 
explored. Udomsinprasert et al.106 showed that the serum 
cartilage oligomeric matrix protein (COMP) levels in children 
with BA were much higher compared to the healthy control 
group, and higher levels were positively correlated with liver 
stiffness and liver fibrosis. Xiao et al.107 revealed that se-
rum exosomal long non-coding RNA-H19 (lncRNA-H19) in 
children with BA is positively correlated with the severity of 
fibrosis liver injury. Yoneyama et al.108 found that serum miR-
214 levels were significantly increased in patients with BA 
having liver fibrosis stage F3–4, suggesting that serum miR-
214 levels may be also used as a non-invasive predictor of 
liver fibrosis in BA.

In contrast, there are fewer novel serum biomarkers for 
predicting the native liver survival of patients with BA. In 
the study by Udomsinprasert et al.,106 a significant reduc-
tion in survival rate was observed in patients with BA and 
high circulating COMP levels (cut-off value: 128.47 ng/mL). 
However, traditional biomarkers may be useful in predicting 
the prognosis of patients with BA. Huang et al.109 conducted 
a retrospective chart review of 90 patients with BA and con-
cluded that serum total bilirubin ≤ 4.85 mg/dL at 1 week 
after HPE can predict a higher chance of native liver survival. 
Recently, Harpavat et al.110 measured total serum bile acid 
levels of 137 patients 6 months after KPE and found that 
patients with levels of ≤ 40 μmol/L had better liver function, 
fewer complications, and lower cumulative incidence of liver 
transplant/death.

The biomarkers mentioned in this chapter also have great 
potential in clinical practice, but most of them lack follow-up 
studies to confirm their clinical values. Besides, their role in 
the pathophysiology of BA needs to be explored.

Comparison and summary
An increasing number of serum biomarkers with diagnos-
tic and prognostic value in BA have been discovered and 
promoted in recent years. Most of them are listed in Table 
3,16,31–37,40,42,52,54,59,69,70,72,75–77,83,87,92–100,102-108,110–113 in-
cluding all the biomarkers mentioned in this review. Among 
them, MMP-7 is currently the most reliable biomarker for the 
diagnosis of BA, which may help clinicians assess the stage 
of liver fibrosis and predict post-KPE outcomes to a certain 
extent. Some studies have evaluated the diagnostic value of 
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GGT while studying MMP-7.32–34,37 They also concluded that 
compared to GGT, MMP-7 showed better sensitivity and spec-
ificity for diagnosing BA. However, efforts to improve the di-
agnostic reliability of GGT are still necessary, because meas-
urement of MMP-7 is not available in most cases. Besides, 
other biomarkers like circulating cytokines and miRNAs also 
have potential in the diagnosis of BA. Further studies to con-
firm their role are warranted.

FGF-19 is a new predictor of outcomes in BA. Although 
there is little research on FGF-19, it still shows strong poten-
tial as a prognostic biomarker. Previously, clinicians often fol-
lowed serum levels of bilirubin to predict disease progression 
after KPE.114–116 A recent study by Harpavat et al.110 found 
that total serum bile acid levels 6 months after KPE were 
related to a lower cumulative incidence of liver transplant/
death, indicating that serum bilirubin levels after KPE can 
reliably predict poor outcomes, including complications from 
progressive liver disease and the invariable need for a liver 
transplant. According to a study by Nyholm et al.,54 serum 
FGF-19 levels at the time of KPE can be used to predict na-
tive liver survival of children with BA. Compared with total 
serum bile acid, FGF-19 may be able to reflect the prognosis 
of patients with BA at an earlier stage and may also reflect 

the degree of ductular reaction. However, the cut-off value 
of FGF-19 in predicting native liver survival and the ability to 
predict complications after KPE still remain to be explored.

The role of M2BPGi in the evaluation of liver fibrosis in 
BA is often compared with aspartate aminotransferase to 
platelet ratio index (APRi). APRi was first proposed by Wai 
et al.117 to assess liver fibrosis in chronic hepatitis C and 
was widely used for the assessment of BA in the past few 
years.111–113,118,119 A study by Yamada et al.59 reported that 
M2BPGi had a better diagnostic ability to detect fibrosis of 
the native liver with grade F4 fibrosis compared to APRi when 
using the METAVIR fibrosis score. Although the ages of the 
patients in this study and another study by Ueno et al.69 var-
ied considerably, the latter study also reported similar find-
ings. This indicates that M2BPGi shows a higher accuracy in 
predicting F4 liver fibrosis in BA. It is also important to note 
that these studies did not include children with BA diagnosed 
less than 3 months ago. Early assessment of the stage of 
liver fibrosis in children with BA would facilitate the selec-
tion of children directly for liver transplantation, avoiding KPE 
wherever appropriate.

We are excited to see more and more biomarkers associ-
ated with BA being discovered. As clinical studies advance, 

Table 3.  Emerging serum biomarkers of biliary atresia

Function Biomarker Reference

Diagnosis MMP-7 16,31–37,40

GGT 31–34,37,72,75–77

IL-33 92–94

MIP3a 94

PVR 99

Caspase-3 100

LECT2 102

miR-4429 and miR-4689 103

miR-140-3p 104

miR-200b/429 105

Assessing liver fibrosis MMP-7 32,35,42

M2BPGi 59,69,70

APRi 59,111–113

IL-13Rα2 98

COMP 106

lncRNA-H19 107

miR-214 108

Predicting native liver survival after KPE MMP-7 35,36

FGF-19 52,54

Total bile acid 110

IL-8 83,87

IL-18 95,96

IL-12p40 97

COMP 106

There was a duplication of references between biomarkers because some studies involved multiple biomarkers at the same time. MMP-7, matrix metalloproteinase-7; 
FGF-19, fibroblast growth factor-19; M2BPGi, mac-2 binding protein glycan isomer; GGT, gamma-glutamyltransferase; IL, Interleukin; lncRNA, long non-coding RNA; 
miRNA, microRNA; MIP3a, macrophage inflammatory protein-3alpha; PVR, human poliovirus receptor; LECT2, leukocyte cell-derived chemotaxin 2; COMP, cartilage 
oligomeric matrix protein; APRi, aspartate aminotransferase to platelet ratio index.
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there is an urgent need to understand the role of these bio-
markers in the development and progress of the disease. 
For example, our understanding of MMP-7 is mostly based 
on studies on other diseases,17 and there is still a lack of re-
search in BA. This knowledge gap also exists with regard to 
biomarkers like FGF-19, M2BPGi, and several others. There-
fore, elucidating the pathophysiological role of biomarkers in 
BA will be an important area of future research.

In conclusion, MMP-7 is currently the most reliable bio-
marker for the diagnosis of BA. FGF-19 and M2BPGi are novel 
biomarkers for evaluating native liver survival and liver fibro-
sis in patients with BA, respectively. GGT and other circulat-
ing cytokines could serve as potential diagnostic biomarkers 
of BA. However, more high-quality, large-size, multicenter 
clinical trials are warranted to confirm the value of these bio-
markers and to elucidate their pathophysiological role in BA.
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